RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1977 Volume 21, Issue 4, Pages 519–524 (Mi mzm7980)

The membership of solutions of quasielliptic equations to space $L_p$

V. A. Kondrat'ev, S. D. Èidel'man

M. V. Lomonosov Moscow State University

Abstract: It is established that the solutions of a quasielliptic equation, belonging to space $L_1$ with weight equal to a negative power of the distance to the flat part of the boundary, belong to space $L_p$ with some $p>1$. In particular, the positive solutions of uniformly elliptic equations in bounded regions $\Omega$ with a smooth boundary belong to $L_p(\Omega)$ with any $p<n/(n-1)$, where $n$ is the dimension of the space of independent variables.

UDC: 517.9

Received: 24.03.1975


 English version:
Mathematical Notes, 1977, 21:4, 290–293

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024