RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1977 Volume 21, Issue 4, Pages 551–556 (Mi mzm7984)

This article is cited in 2 papers

Two theorems on boundary properties of minimal surfaces in nonparametric form

V. M. Miklyukov

Tyumen State University

Abstract: Let $D$ be a region with rectifiable Jordan boundary $\Gamma$, and let $z=f(x,y)$ be a minimal surface defined over $D$. This paper establishes that: 1) function $z=f(x,y)$ almost everywhere on $\Gamma$ has finite or infinite angular boundary values; 2) if region $D$ is the exterior of a circle then, almost everywhere on boundary $\Gamma$, function $z=f(x,y)$ can be continued by continuity.

UDC: 519.3

Received: 25.06.1975


 English version:
Mathematical Notes, 1977, 21:4, 307–310

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025