RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1977 Volume 22, Issue 2, Pages 179–188 (Mi mzm8039)

This article is cited in 8 papers

An asymptotic variant of the Fuglede–Putnam theorem on commutators for elements of Banach algebras

E. A. Gorina, M. I. Karahanyanb

a M. V. Lomonosov Moscow State University
b Yerevan State University

Abstract: The Fuglede–Putnam theorem (in Moore's asymptotic form) on the commutators of normal operators of a Hilbert space is generalized, in particular, in the following form. Let $a_1,a_2,b_1$ and $b_2$ be the elements of a complex Banach algebra such that $[a_1,b_1]=[a_2,b_2]=0$ and $\|e^{\overline\lambda a_1-\lambda b_1}\|=o(|\lambda|^{1/2})$, $\|e^{\overline\lambda a_2-\lambda b_2}\|=o(|\lambda|^{1/2})$ as $\lambda\to\infty$. Then the inequality $\|b_1x-xb_2\|\le\varphi(\|a_1-xa_2\|)$, where $\varphi(\varepsilon)\to0$ as $\varepsilon\to0$, holds uniformly in every ball $\|x\|\le R<\infty$.

UDC: 513.8

Received: 08.04.1976


 English version:
Mathematical Notes, 1977, 22:2, 591–596

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025