RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1977 Volume 22, Issue 2, Pages 297–301 (Mi mzm8050)

This article is cited in 1 paper

Theorems on imbedding in anisotropic spaces of vector-valued functions

S. Ya. Yakubova, V. B. Shakhmurovb

a Institute of Applied Mathematics and Mechanics AS of AzSSR
b Azerbaijan Pedagogical Institute

Abstract: Imbedding theorems are proved for abstract anisotropic spaces of Sobolev type. In particular, it is proved that if $G$ is a bounded set satisfying the $l$ horn condition, then there holds the imbedding
$$ D^\alpha W_2(G;H(A),H)\hookrightarrow L_2(G;H(A^1-|\alpha:l|)), $$
where $|\alpha:l|=\frac{\alpha_1}{l_2}+\dots+\frac{\alpha_n}{l_n}\le1$, $H$ is a Hilbert space, and $A$ is a self-adjoint positive operator.

UDC: 517.5

Received: 03.06.1976


 English version:
Mathematical Notes, 1977, 22:2, 657–659

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024