RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1977 Volume 22, Issue 3, Pages 381–394 (Mi mzm8059)

This article is cited in 15 papers

Discrete imbedding theorems and Lebesgue constants

A. A. Yudina, V. A. Yudinb

a Vladimir Pedagogical Institute
b Moscow Power Engineering Institute

Abstract: The order of growth of the Lebesgue constant for a “hyperbolic cross” is found:
$$ L_R=\int_{T^2}\Bigl|\sum_{0<|\nu_1\nu_2|\le R_2}e^{2\pi i\nu x}\Bigr|\,dx\asymp R^{1.2},\quad R\to\infty. $$
Estimates are obtained by applying a discrete imbedding theorem. It is proved that among all convex domains in $E^2$, the square gives rise to a Lebesgue constant with the slowest growth $\ln^2R$.

UDC: 517.5

Received: 05.07.1976


 English version:
Mathematical Notes, 1977, 22:3, 702–711

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024