RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1977 Volume 22, Issue 5, Pages 671–678 (Mi mzm8091)

Diameters of a class of smooth functions in the space $L_2$

R. S. Ismagilova, Kh. Nasyrova

a Moscow Institute of Electronic Engineering

Abstract: The class $V_\psi$, consisting of the smooth functions $f(t)$, $0\le t\le1$, satisfying the condition $\int_0^1\psi[f^{(r)}(t)]\,dt\le1$, where the function $\psi(t)$ is nonnegative and $r$ is a natural number, is studied. Under certain restrictions on the function $\psi(t)$ ensuring the compactness of the class $V_\psi$, the order of decrease of the Kolmogorov diameters $d_n(V_\psi)$ is computed. The analogous problem for the case $r=1$ is solved also for functions of several variables.

UDC: 517

Received: 07.12.1975


 English version:
Mathematical Notes, 1977, 22:5, 865–870

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024