This article is cited in
4 papers
Rational approximations of real numbers
V. A. Ivanov Saratov Polytechnical Institute
Abstract:
For any
$x\in\mathbf R$ put
$$
c(x)=\varlimsup_{t\to\infty}\min_{\substack{(p,q)\in Z\times N\\q\le t}}t|qx-p|.
$$
Let
$[x_0;x_1,\dots,x_n,\dots]$ be an expansion of
$x$ into a continued fraction and let $M=\{x\in J,\ \varlimsup\limits_{n\to\infty}x_n<\infty\}$. For
$x\in M$ put
$D(x)=c(x)/(1-c(x))$. The structure of the set
$\mathfrak D=\{D(x),\ x\in M\}$ is studied. It is shown that
$$
\mathfrak D\cap(3+\sqrt3,(5+3\sqrt3)/2)=\{D(x^{(n,3)})\}_{n=0}^\infty\nearrow(5+3\sqrt3)/2,
$$
where
$x^{(n,3)}=[\overline{3;(1,2)_n,1}]$. This yields for
$\mu=\inf\{z,\mathfrak D\supset(z,+\infty)\}$ (“origin of the ray”) the following lower bound:
$\mu\ge(5+3\sqrt3)/2=5,\!098\dots$. Suppose
$a\in N$. Put $M(a)=\{x\in M,\ \varlimsup\limits_{n\to\infty}x_n=a\}$,
$\mathfrak D(a)=\{D(x),\ x\in M(a)\}$. The smallest limit point of
$\mathfrak D(a)$ $(a\ge2)$ is found. The structure of
$\mathfrak D(a)$ is studied completely up to the smallest limit point and elucidated to the right of it.
UDC:
511.7
Received: 25.03.1976