RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1978 Volume 23, Issue 6, Pages 825–838 (Mi mzm8183)

This article is cited in 1 paper

Approximation of the function sign x in the uniform and integral metrics by means of rational functions

S. A. Agahanov, N. Sh. Zagirov

Daghestan State University

Abstract: Estimates are obtained for the nonsymmetric deviations $R_n[\operatorname{sign}x]$ and $R_n[\operatorname{sign}x]_L$ of the function $\operatorname{sign}x$ from rational functions of degree $\le n$, respectively, in the metric
$$ C([-1,-\delta]\cup[\delta,1]),\quad0<\delta<\exp(-\alpha\sqrt{n}),\quad\alpha>0, $$
and in the metric $L[-1,1]$:
\begin{gather*} R_n[\operatorname{sign}x]\asymp\exp\{-\pi^2n/(2\ln1/\delta)\},\quad n\to\infty,\\ 10^{-3}n^{-3}\exp(-2\pi\sqrt{n})<R_n[\operatorname{sign}x]_L<\exp(-\pi\sqrt{n/2}+150). \end{gather*}
is valid. The lower estimate in this inequality was previously obtained by Gonchar ([2], cf. also [1]).

UDC: 517.5

Received: 29.04.1976


 English version:
Mathematical Notes, 1978, 23:6, 452–460

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024