RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2011 Volume 90, Issue 3, Pages 445–453 (Mi mzm8406)

This article is cited in 13 papers

On Quasilinear Beltrami-Type Equations with Degeneration

E. A. Sevost'yanov

Institute of Applied Mathematics and Mechanics, Ukraine National Academy of Sciences, Donetsk

Abstract: We consider the solvability problem for the equation $f_{\overline{z}}=\nu(z,f(z)) f_z$, where the function $\nu(z,w)$ of two variables can be close to unity. Such equations are called quasilinear Beltrami-type equations with ellipticity degeneration. We prove that, under some rather general conditions on $\nu(z,w)$, the above equation has a regular homeomorphic solution in the Sobolev class $W_{\operatorname{loc}}^{1,1}$. Moreover, such solutions $f$ satisfy the inclusion $f^{\,-1}\in W_{\operatorname{loc}}^{1,2}$.

Keywords: quasilinear Beltrami-type equation, existence theorem, regular homeomorphic solution, Sobolev class, homeomorphism, Carathéodory condition, function of bounded mean oscillation.

UDC: 517.5

Received: 07.03.2009
Revised: 03.07.2010

DOI: 10.4213/mzm8406


 English version:
Mathematical Notes, 2011, 90:3, 431–438

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024