RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2009 Volume 86, Issue 2, Pages 190–201 (Mi mzm8472)

This article is cited in 12 papers

The Volume of the Lambert Cube in Spherical Space

D. A. Derevnina, A. D. Mednykhb

a Tumen State Academy of Architecture and Engineering
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Abstract: The Lambert cube $Q(\alpha,\beta,\gamma)$ is one of the simplest polyhedra. By definition, this is a combinatorial cube with dihedral angles $\alpha$, $\beta$, and $\gamma$ at three noncoplanar edges and with right angles at all other edges. The volume of the Lambert cube in hyperbolic space was obtained by R. Kellerhals (1989) in terms of the Lobachevskii function $\Lambda(x)$. In the present paper, we find the volume of the Lambert cube in spherical space. It is expressed in terms of the function
$$ \delta(\alpha,\theta)=\int_{\theta}^{\pi/2}\log(1-\cos2\alpha\cos2\tau)\frac{d\tau}{\cos2\tau}, $$
which can be regarded as the spherical analog of the function
$$ \Delta(\alpha,\theta)=\Lambda(\alpha+\theta)-\Lambda(\alpha-\theta). $$


Keywords: Lambert cube, spherical space, hyperbolic space, Lobachevskii function, Schläfli formula.

UDC: 514.135

Received: 30.07.2008
Revised: 31.12.2008

DOI: 10.4213/mzm8472


 English version:
Mathematical Notes, 2009, 86:2, 176–186

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024