RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2011 Volume 89, Issue 6, Pages 894–913 (Mi mzm8543)

This article is cited in 1 paper

Bases of Exponentials in Weighted Spaces Generated by Zeros of Functions of Sine Type

A. M. Sedletskii

M. V. Lomonosov Moscow State University

Abstract: If $\omega$ is an $A_p$-weight with some additional condition and $(\lambda)$ is a separated sequence of all zeros of a sine-type function possessing a certain multiplier (in the sense of Fourier transforms) property, then the corresponding system of exponentials $(e^{i\lambda_nt})$ constitutes a basis in the weighted space $L^p((-\pi,\pi),\omega(t)\,dt)$, $1<\pi<\infty$.

Keywords: basis of exponentials, weighted space, sine-type function, $A_p$-weight, Riesz property, Fourier multiplier, weighted multiplier, Laplace transformation, Hölder's inequality.

UDC: 517.982.25

Received: 03.06.2009
Revised: 01.02.2010

DOI: 10.4213/mzm8543


 English version:
Mathematical Notes, 2011, 89:6, 853–870

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024