RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2012 Volume 91, Issue 6, Pages 840–852 (Mi mzm8544)

This article is cited in 2 papers

Effective Compactness and Sigma-Compactness

V. G. Kanovei, V. A. Lyubetskii

A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences

Abstract: Using the Gandy–Harrington topology and other methods of effective descriptive set theory, we prove several theorems about compact and $\sigma$-compact sets. In particular, it is proved that any $\Delta_1^1$-set $A$ in the Baire space $\mathscr N$ either is an at most countable union of compact $\Delta_1^1$-sets (and hence is $\sigma$-compact) or contains a relatively closed subset homeomorphic to $\mathscr N$ (in this case, of course, $A$ cannot be $\sigma$-compact).

Keywords: effective descriptive set theory, effectively compact, $\sigma$-compact, the Baire space, Gandy–Harrington topology, $\Delta^1_1$-set.

UDC: 510.225

Received: 01.11.2009
Revised: 27.05.2011

DOI: 10.4213/mzm8544


 English version:
Mathematical Notes, 2012, 91:6, 789–799

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024