RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2010 Volume 87, Issue 2, Pages 163–174 (Mi mzm8587)

This article is cited in 3 papers

The Global Structure of Locally Convex Hypersurfaces in Finsler–Hadamard Manifolds

A. A. Borisenko, E. A. Olin

V. N. Karazin Kharkiv National University

Abstract: Locally convex compact immersed hypersurfaces in the Finsler–Hadamard space with bounded $T$-curvature are considered. Under certain conditions on normal curvatures, such hypersurfaces are proved to be convex, embedded, and homeomorphic to the sphere. To this end, the Rauch theorem is generalized to exponential maps of hypersurfaces and the convexity of parallel hypersurfaces is proved.

Keywords: Riemannian manifold, Rauch comparison theorem, Finsler metric, Gaussian, sectional, normal curvature, locally convex immersion, $T$-curvature, parallel hypersurface, Levi-Cività connection.

UDC: 514.763.624

Received: 02.02.2009
Revised: 16.06.2009

DOI: 10.4213/mzm8587


 English version:
Mathematical Notes, 2010, 87:2, 155–164

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025