RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2010 Volume 88, Issue 4, Pages 605–619 (Mi mzm8692)

This article is cited in 12 papers

Character Sums over Shifted Primes

J. B. Friedlandera, K. Gongb, I. E. Shparlinskic

a University of Toronto
b Henan University
c Macquarie University

Abstract: We obtain a new bound for sums of a multiplicative character modulo an integer $q$ at shifted primes $p+a$ over primes $p\le N$. Our bound is nontrivial starting with $N\ge q^{8/9+\varepsilon}$ for any $\varepsilon>0$. This extends the range of the bound of Z. Kh. Rakhmonov that is nontrivial for $N\ge q^{1+\varepsilon}$.

Keywords: nonprincipal character, von Mangoldt function, primitive character, Euler function, sieve of Eratosthenes, Möbius function, Legendre formula.

UDC: 517

Received: 29.11.2009

DOI: 10.4213/mzm8692


 English version:
Mathematical Notes, 2010, 88:4, 585–598

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024