RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2011 Volume 90, Issue 2, Pages 285–299 (Mi mzm8713)

This article is cited in 3 papers

Smooth Three-Dimensional Canonical Thresholds

D. A. Stepanov

N. E. Bauman Moscow State Technical University

Abstract: If $X$ is an algebraic variety with at most canonical singularities and $S$ is a $\mathbb{Q}$-Cartier hypersurface in $X$, then the canonical threshold of the pair $(X,S)$ is defined as the least upper bound of the reals $c$ for which the pair $(X,cS)$ is canonical. We show that the set of all possible canonical thresholds of the pairs $(X,S)$, where $X$ is smooth and three-dimensional, satisfies the ascending chain condition. We also derive a formula for the canonical threshold of the pair $(\mathbb{C}^3,S)$, where $S$ is a Brieskorn singularity.

Keywords: algebraic variety, canonical singularity, canonical threshold, $\mathbb{Q}$-Cartier hypersurface, Brieskorn singularity, minimal model program, Picard number.

UDC: 512.72

Received: 18.01.2010
Revised: 08.07.2010

DOI: 10.4213/mzm8713


 English version:
Mathematical Notes, 2011, 90:2, 265–278

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025