RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2010 Volume 87, Issue 6, Pages 934–939 (Mi mzm8746)

This article is cited in 5 papers

A Short Note on the Frobenius Norm of the Commutator

Yan-Dong Wu, Xu-Qing Liu

Huaiyin Institute of Technology

Abstract: This note mainly aims to improve the inequality, proposed by Böttcher and Wenzel, giving the upper bound of the Frobenius norm of the commutator of two particular matrices in $\mathbb R^{n\times n}$. We first propose a new upper bound on basis of the Böttcher and Wenzel's inequality. Motivated by the method used, the inequality $\|\boldsymbol{XY}-\boldsymbol{YX}\|_F^2\le2\|\boldsymbol X\|_F^2\|\boldsymbol Y\|_F^2$ is finally improved into
$$ \|\boldsymbol{XY}-\boldsymbol{YX}\|_F^2\le2\|\boldsymbol X\|_F^2\|\boldsymbol Y\|_F^2-2[\operatorname{tr}(\boldsymbol X^T\boldsymbol Y)]^2. $$
In addition, a further improvement is made.

Keywords: commutator, Frobenius norm, Böttcher and Wenzel's conjecture, random matrix.

UDC: 512.542

Received: 25.11.2008

DOI: 10.4213/mzm8746


 English version:
Mathematical Notes, 2010, 87:6, 903–907

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024