RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2012 Volume 91, Issue 1, Pages 120–135 (Mi mzm8771)

This article is cited in 15 papers

On Small Solutions of Nonlinear Equations with Vector Parameter in Sectorial Neighborhoods

N. A. Sidorov, R. Yu. Leontiev, A. I. Dreglea

Irkutsk State University

Abstract: We consider the nonlinear operator equation $B(\lambda)x+R(x,\lambda)=0$ with parameter $\lambda$, which is an element of a linear normed space $\Lambda$. The linear operator $B(\lambda)$ has no bounded inverse for $\lambda=0$. The range of the operator $B(0)$ can be nonclosed. The nonlinear operator $R(x,\lambda)$ is continuous in a neighborhood of zero and $R(0,0)=0$. We obtain sufficient conditions for the existence of a continuous solution $x(\lambda)\to 0$ as $\lambda\to 0$ with maximal order of smallness in an open set $S$ of the space $\Lambda$. The zero of the space $\Lambda$ belongs to the boundary of the set $S$. The solutions are constructed by the method of successive approximations.

Keywords: nonlinear operator equation, Banach space, sectorial neighborhood, Fredholm operator, bifurcation, Schmidt's lemma, regularizer for a nonlinear operator.

UDC: 517.988.67

Received: 05.03.2010

DOI: 10.4213/mzm8771


 English version:
Mathematical Notes, 2012, 91:1, 90–104

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024