Abstract:
It is proved that an orthogonally additive order bounded homogeneous polynomial acting between uniformly complete vector lattices admits a representation in the form of the composition of a linear order bounded operator and a special homogeneous polynomial playing the role of a power-law function, which is absent in the vector lattice. This result helps to establish a criterion for the integral representability of an orthogonally additive homogeneous polynomial.
Keywords:vector lattice, relatively uniform convergence, linear order bounded operator, orthogonally additive order bounded homogeneous polynomial.