RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2012 Volume 91, Issue 2, Pages 172–183 (Mi mzm8791)

This article is cited in 1 paper

The Kolmogorov and Stechkin Problems for Classes of Functions Whose Second Derivative Belongs to the Orlicz Space

Yu. V. Babenkoa, D. Skorokhodovb

a Kennesaw State University, USA
b Dnepropetrovsk National University

Abstract: For any $t\in [0,1]$, we obtain the exact value of the modulus of continuity
$$ \omega_N(D_t,\delta):=\sup\{|x'(t)|:\|x\|_{L_{\infty}[0,1]}\le \delta,\, \|x''\|_{L_{N}^*[0,1]}\le 1\}, $$
where $L_N^*$ is the dual Orlicz space with Luxemburg norm and $D_t$ is the operator of differentition at the point $t$. As an application, we state necessary and sufficient conditions in the Kolmogorov problem for three numbers. Also we solve the Stechkin problem, i.e., the problem of approximating an unbounded operator of differentition $D_t$ by bounded linear operators for the class of functions $x$ such that $\|x''\|_{L_{N}^*[0,1]}\le 1$.

Keywords: Kolmogorov problem for three numbers, Stechkin problem, Orlicz space, Luxemburg norm, operator of differentition, Banach space, modulus of continuity.

UDC: 517

Received: 10.12.2009
Revised: 27.02.2010

DOI: 10.4213/mzm8791


 English version:
Mathematical Notes, 2012, 91:2, 161–171

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024