RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2010 Volume 88, Issue 1, Pages 105–115 (Mi mzm8798)

This article is cited in 2 papers

On the Existence of a Point Subset with Three or Five Interior Points

Xianglin Weia, Wenhua Lanb, Ren Dingb

a Hebei University of Science and Technology
b Hebei Polytechnic University

Abstract: An interior point of a finite planar point set is a point of the set that is not on the boundary of the convex hull of the set. For any integer $k\ge1$, let $h(k)$ be the smallest integer such that every point set in the plane, no three collinear, with at least $h(k)$ interior points, has a subset with $k$ or $k+2$ interior points of $P$. We prove that $h(3)=8$.

Keywords: finite planar point set, interior point.

UDC: 517

Received: 30.06.2010
Revised: 30.12.2007

DOI: 10.4213/mzm8798


 English version:
Mathematical Notes, 2010, 88:1, 103–111

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024