RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2013 Volume 93, Issue 3, Pages 368–372 (Mi mzm8833)

Maps to Spaces of Compacta Determined by Limit Sets

A. P. Devyatkov

Tyumen State University

Abstract: For a sequence of functions on the unit disk $D\subset\mathbb C$, the map of the boundary circle to a space of compact sets with Hausdorff metric which takes each point $e^{i\theta}\in\partial D$ to the limit set of the sequence of functions at this point is considered. It is shown that such a map is of Borel class at most 4.

Keywords: Borel map, Borel class, limit set of a sequence of functions, Hausdorff metric.

UDC: 517.544.72

Received: 15.03.2010
Revised: 16.03.2012

DOI: 10.4213/mzm8833


 English version:
Mathematical Notes, 2013, 93:3, 392–396

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024