RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2011 Volume 90, Issue 2, Pages 168–182 (Mi mzm8862)

This article is cited in 6 papers

Uniqueness of Quantum Markov Chains Associated with an $XY$-Model on a Cayley Tree of Order $2$

L. Accardia, F. M. Mukhamedovb, M. Kh. Saburovb

a Università degli Studi di Roma — Tor Vergata
b International Islamic University Malaysia

Abstract: We propose the construction of a quantum Markov chain that corresponds to a “forward” quantum Markov chain. In the given construction, the quantum Markov chain is defined as the limit of finite-dimensional states depending on the boundary conditions. A similar construction is widely used in the definition of Gibbs states in classical statistical mechanics. Using this construction, we study the quantum Markov chain associated with an $XY$-model on a Cayley tree. For this model, within the framework of the given construction, we prove the uniqueness of the quantum Markov chain, i.e., we show that the state is independent of the boundary conditions.

Keywords: quantum Markov chain, Cayley tree, $XY$-model, Gibbs state, phase transition, quasiconditional expectation, graph, dynamical system, quasilocal algebra.

UDC: 517.98+531

Received: 01.09.2010
Revised: 17.02.2011

DOI: 10.4213/mzm8862


 English version:
Mathematical Notes, 2011, 90:2, 162–174

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025