Abstract:
In this paper, we consider periodic systems of ordinary differential equations with impulse perturbations at fixed points of time. It is assumed that the system possesses the trivial solution. We show that if the trivial solution of the system is stable or asymptotically stable, then it is uniformly stable or uniformly asymptotically stable, respectively. By using the method of Lyapunov functions, we establish criteria of uniform asymptotical stability and instability.