RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2010 Volume 88, Issue 6, Pages 822–835 (Mi mzm8914)

This article is cited in 9 papers

Approximation of Values of the Gauss Hypergeometric Function by Rational Fractions

M. G. Bashmakova

Bryansk State Technical University

Abstract: We consider a new approach to estimating the irrationality measure of numbers that are values of the Gauss hypergeometric function. Some of the previous results are improved, in particular, those concerning irrationalities of the form $\sqrt{k}\ln((\sqrt{k}+1)/(\sqrt{k}-1))$ with $k\in\mathbb N$.

Keywords: Gauss hypergeometric function, rational fraction, irrationality measure, Laplace method, Laurent series.

UDC: 511.36

Received: 09.03.2010
Revised: 13.04.2010

DOI: 10.4213/mzm8914


 English version:
Mathematical Notes, 2010, 88:6, 785–797

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024