RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2012 Volume 92, Issue 1, Pages 19–26 (Mi mzm8965)

This article is cited in 1 paper

Lower Bound for the Lebesgue Function of an Interpolation Process with Algebraic Polynomials on Equidistant Nodes of a Simplex

N. V. Baidakovaab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
b Ural Federal University, Ekaterinburg

Abstract: For an interpolation process with algebraic polynomials of degree $n$ on equidistant nodes of an $m$-simplex for $m\ge 2$, we obtain a pointwise lower bound for the Lebesgue function similar to the well-known estimate for interpolation on a closed interval.

Keywords: interpolation process, equidistant nodes, algebraic polynomial, Lebesgue function, $m$-simplex, Lebesgue constant.

UDC: 517.51

Received: 27.10.2010

DOI: 10.4213/mzm8965


 English version:
Mathematical Notes, 2012, 92:1, 16–22

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025