RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2012 Volume 92, Issue 6, Pages 884–892 (Mi mzm9124)

This article is cited in 1 paper

Real Four-Dimensional $M$-Triquadrics

V. A. Krasnov

P. G. Demidov Yaroslavl State University

Abstract: Nonsingular maximal intersections of three real six-dimensional quadrics are considered. Such algebraic varieties are referred to for brevity as real four-dimensional $M$-triquadrics. The dimensions of their cohomology spaces with coefficients in the field of two elements are calculated.

Keywords: six-dimensional quadric, triquadric, spectral curve, spectral bundle, index function, index orientation, complete involution, cohomology group, Stiefel–Whitney class.

UDC: 512.7

Received: 21.01.2011

DOI: 10.4213/mzm9124


 English version:
Mathematical Notes, 2012, 92:6, 790–796

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025