RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2013 Volume 93, Issue 2, Pages 246–251 (Mi mzm9131)

This article is cited in 1 paper

Note on Besicovitch's Theorem on the Possible Values of Upper and Lower Derivatives

G. G. Oniani

Akaki Tsereteli State University

Abstract: Let $B_1,\dots,B_k$ be Busemann–Feller and regular differential bases composed of intervals of the corresponding dimensions. It is proved that if $B_1,\dots,B_k$ satisfy a certain condition (called the completeness condition), then, for their Cartesian product $B_1\times \dotsb\times B_k$, an analog of Besicovitch's theorem on the possible values of strong upper and lower derivatives is valid.

Keywords: Besicovitch's theorem on the values of upper and lower derivatives, Busemann–Feller basis, regular differentiation basis.

UDC: 517.51

Received: 05.11.2010
Revised: 24.03.2011

DOI: 10.4213/mzm9131


 English version:
Mathematical Notes, 2013, 93:2, 282–287

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025