RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2014 Volume 95, Issue 1, Pages 136–149 (Mi mzm9240)

This article is cited in 4 papers

On the Finiteness of the Brauer Group of an Arithmetic Scheme

S. G. Tankeev

Vladimir State University

Abstract: The Artin conjecture on the finiteness of the Brauer group is shown to hold for an arithmetic model of a K3 surface over a number field $k$. The Brauer group of an arithmetic model of an Enriques surface over a sufficiently large number field is shown to be a $2$-group. For almost all prime numbers $l$, the triviality of the $l$-primary component of the Brauer group of an arithmetic model of a smooth projective simply connected Calabi–Yau variety $V$ over a number field $k$ under the assumption that $V(k)\neq\varnothing$ is proved.

Keywords: Brauer group, arithmetic model, K3 surface, Enriques surface, Calabi–Yau variety, Artin conjecture.

UDC: 512.71

Received: 12.08.2011
Revised: 28.02.2013

DOI: 10.4213/mzm9240


 English version:
Mathematical Notes, 2014, 95:1, 122–133

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025