RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2013 Volume 93, Issue 5, Pages 684–701 (Mi mzm9293)

This article is cited in 26 papers

Modeling the Bursting Effect in Neuron Systems

S. D. Glyzina, A. Yu. Kolesova, N. Kh. Rozovb

a P. G. Demidov Yaroslavl State University
b M. V. Lomonosov Moscow State University

Abstract: We propose a new method for modeling the well-known phenomenon of “bursting behavior” in neuron systems by invoking delay equations. Namely, we consider a singularly perturbed nonlinear difference-differential equation with two delays describing the functioning of an isolated neuron. Under a suitable choice of parameters, we establish the existence of a stable periodic motion with any prescribed number of spikes on a closed time interval equal to the period length.

Keywords: “bursting behavior” in neuron systems, difference-differential equation, relay equation, Cauchy problem, Schauder principle, relaxation cycle, spiking, stability.

UDC: 517.926

Received: 01.12.2011

DOI: 10.4213/mzm9293


 English version:
Mathematical Notes, 2013, 93:5, 676–690

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024