RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2014 Volume 95, Issue 4, Pages 564–576 (Mi mzm9355)

This article is cited in 11 papers

Boundary Behavior of Orlicz–Sobolev Classes

D. A. Kovtonyuk, V. I. Ryazanov, R. R. Salimov, E. A. Sevost'yanov

Institute of Applied Mathematics and Mechanics, National Academy of Sciences of Ukraine, Donetsk

Abstract: It is proved that homeomorphisms of the Orlicz–Sobolev class $W^{1,\varphi}_\rm{loc}$ can be continuously extended to the boundaries of some domains if the function $\varphi$ defining this class satisfies a Carderón-type condition and the outer dilatation $K_f$ of the mapping $f$ satisfies the divergence condition for integrals of special form. In particular, the result holds for homeomorphisms of the Sobolev classes $W^{1,1}_\rm{loc}$ with $K_f\in L^{q}_\rm{loc}$ for $q>n-1$.

Keywords: Orlicz–Sobolev class, Orlicz space, continuous extension, outer dilatation, homeomorphic extension.

UDC: 517.5

Received: 27.12.2012

DOI: 10.4213/mzm9355


 English version:
Mathematical Notes, 2014, 95:4, 509–519

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025