RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2012 Volume 91, Issue 6, Pages 813–818 (Mi mzm9383)

This article is cited in 7 papers

An Implicit-Function Theorem for Inclusions

E. R. Avakova, G. G. Magaril-Il'yaevbc

a Institute of Control Sciences, Russian Academy of Sciences, Moscow
b A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow
c South Mathematical Institute of VSC RAS

Abstract: We consider the question of the solvability of an inclusion $F(x,\sigma)\in A$, i.e., of determining a mapping (implicit function) $\sigma\mapsto x(\sigma)$ defined on a set such that $F(x(\sigma),\sigma)\in A$ for any $\sigma$ from this set. Results of this kind play a key role in the different branches of analysis and, especially, in the theory of extremal problems, where they are the main tool for deriving conditions for an extremum.

Keywords: implicit-function theorem, nonlinear equation, Newton's method, Banach space, multivalued mapping, continuous selector.

UDC: 517.51

Received: 28.09.2010
Revised: 13.01.2011

DOI: 10.4213/mzm9383


 English version:
Mathematical Notes, 2012, 91:6, 764–769

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024