RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1969 Volume 5, Issue 4, Pages 441–448 (Mi mzm9477)

This article is cited in 1 paper

Conditions of convergence of boundary values of Cauchy type integrals

G. Ts. Tumarkin

F. Ordzhonikidze Geological Prospecting Institute, Moscow

Abstract: In a domain $G$ bounded by a rectifiable Jordan curve $\gamma$ let be given a sequence of analytic functions $\{f_n(z)\}$ representable by Cauchy–Lebesgue type integrals
$$ f_n(z)=\int_\gamma\frac{\omega_n(\zeta)}{\zeta-z}d\zeta. $$
A theorem is established which enables one to determine from the convergence in measure of $\{\omega_n(\zeta)\}$ on a set $e\subset\gamma$ whether or not there is convergence in measure on the same set of $\{f_n(\zeta)\}$, the angular boundary values of the functions $f_n(z)$.

UDC: 517.5

Received: 09.07.1968


 English version:
Mathematical Notes, 1969, 5:4, 265–269

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025