RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1970 Volume 7, Issue 5, Pages 581–592 (Mi mzm9542)

This article is cited in 5 papers

Radii of convexity and close-to-convexity of certain integral representations

F. G. Avkhadiev

V. I. Ul'yanov Lenin Kazan State University

Abstract: Strict upper bounds are determined for $|s(z)|$, $|\mathrm{Re}\,s(z)|$, and $|\mathrm{Im}\,s(z)|$ in the class of functions $s(z)=a_nz^n+a_{n+1}z^{n+1}+\dots$ ($n\geqslant1$) regular in $|z|<1$ and satisfying the condition
$$ |u(\theta_1)-u(\theta_2)|\leqslant K|\theta_1-\theta_2|, $$
where $u(\theta)=\mathrm{Re}\,s(e^{i\theta})$, $K>0$, and $\theta_1$ and $\theta_2$ are arbitrary real numbers. These bounds are used in the determination of radii of convexity and close-to-convexity of certain integral representations.

UDC: 517.5

Received: 23.05.1969


 English version:
Mathematical Notes, 1970, 7:5, 350–357

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024