RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1970 Volume 8, Issue 1, Pages 121–127 (Mi mzm9588)

$P$-separation of variables in Laplace's equation

I. I. Tugov

P. N. Lebedev Physics Institute, Academy of Sciences of the USSR

Abstract: The $P$-separation of variables in Laplace's equation $\Delta_2u=0$ in flat $n$-dimensional space $S_n$ is proved to be equivalent to the complete separation of variables in the invariant Laplace equation
$$ \Delta u\equiv \left\{\Delta_2+\frac{n-2}{4(n-1)}R\right\}u=0, $$
in a space $V_n$ of constant curvature $K\ne0$ ($\Delta$ is the invariant Laplacian, and $R$ is the scalar curvature, all in $V_n$).

UDC: 513.78

Received: 21.07.1967


 English version:
Mathematical Notes, 1970, 8:1, 538–541

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025