RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1970 Volume 8, Issue 2, Pages 129–136 (Mi mzm9589)

This article is cited in 6 papers

Convergence of orthogonal series to $+\infty$

R. I. Ovsepyana, A. A. Talalyanb

a Institute of Mathematics and Mechanics, Academy of Sciences of the Armenian SSR
b Erevan State University

Abstract: For any sequence $\{b_n\}$ such that $\sum_{n=1}^\infty b_n^2=\infty$, a uniformly bounded system $\{\Phi_n(x)\}$, orthonormal on $[0, 1]$, is constructed such that the series $\sum_{n=1}^\infty b_n\Phi_n(x)$ diverges to $+\infty$ on some set $E\subset[0, 1]$, $0<\mathrm{mes}\, E<1$, for any order of the terms.

UDC: 517.5

Received: 11.11.1969


 English version:
Mathematical Notes, 1970, 8:2, 545–549

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024