RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1972 Volume 11, Issue 1, Pages 41–52 (Mi mzm9762)

Projective and free ordered modules

A. V. Mikhalev, M. A. Shatalova

M. V. Lomonosov Moscow State University

Abstract: The paper introduces the concepts of $o$-free and $o$-projective modules over directed ring $R$. Some sufficient conditions are established under which all $o$-projective $R$-modules are $o$-free. In particular, it is proven that all $o$-projective $R$-modules are $o$-free in the cases: linearly ordered rings $R$ without divisors of zero in which each element $0<r<1$ is invertible; commutative factorable domain of integrity with any linear order; commutative rings without divisors of zero in which all projective modules are free with any linear order.

UDC: 512.4

Received: 28.07.1970


 English version:
Mathematical Notes, 1972, 11:1, 29–35

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025