RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1972 Volume 11, Issue 5, Pages 499–508 (Mi mzm9816)

This article is cited in 1 paper

On the convergence of orthogonal series to $+\infty$

R. I. Ovsepyan

Mathematics and Mechanics Institute, Academy of Sciences of the Armenian SSR

Abstract: For any sequence of numbers $a_n\downarrow0$, $\sum_{n=1}^\infty a_n^2=\infty$, a uniformly bounded orthonormal system of continuous functions $\varphi_n(x)$ which is complete in $L_2(0,1)$, and a sequence of numbers $b_n$ ($0<b_n\leqslant a_n$) are constructed such that $\sum_{n=1}^\infty b_n\varphi_n(x)=\infty$ everywhere on $(0, 1)$.

UDC: 517.5

Received: 07.06.1971


 English version:
Mathematical Notes, 1972, 11:5, 305–310

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024