RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1972 Volume 11, Issue 5, Pages 559–567 (Mi mzm9823)

On a transformation operator for a system of Sturm–Liouville equations

M. B. Velieva, M. G. Gasymovb

a Institute of Mathematics and Mechanics, Academy of Sciences of the Azerbaidzhan SSR
b S. M. Kirov Azerbaidzhan State University

Abstract: We prove the existence of a transformation operator with a condition at infinity that sends a solution of the matrix equation $-y''+My=\lambda^2y$ ($M$ is a constant Hermitian matrix) into a solution of the matrix equation $-y''+Q(x)y+My=\lambda^2y$ (the matrix function $Q(x)$ is continuously differentiable for $0\leqslant x<\infty$ and it is Hermitian for each $x$ belonging to $[0,\infty)$); we study some properties of the kernel of the transformation operator.

UDC: 517.9

Received: 03.06.1971


 English version:
Mathematical Notes, 1972, 11:5, 341–346

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024