RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1972 Volume 11, Issue 6, Pages 619–623 (Mi mzm9829)

This article is cited in 1 paper

Asymptotic number of solutions of some systems of diophantine inequalities

V. I. Bernik

Institute of Mathematics, Academy of Sciences of the Belorussian SSR

Abstract: The problem of finding the asymptotic number of solutions of the system of inequalities
\begin{gather*} ||\alpha_iq||<q^{-\sigma_i}\qquad(i=1,\dots,n),\quad\sigma_i>0,\\ \sigma=\sum_{i=1}^n\sigma_i<c(\alpha_1,\dots,\alpha_n),\qquad q=1,\dots,N,\\ \end{gather*}
is solved under the assumption that for real numbers $\alpha_1,\dots,\alpha_n$, starting from some $Q=\max(q_1,\dots,q_n)$ the inequality
$$ ||\alpha_1q_1+\dots+\alpha_nq_n||\geqslant\frac1{Q^{n+\lambda}} $$
holds for any real $\lambda\geqslant0$.

UDC: 511

Received: 11.02.1971


 English version:
Mathematical Notes, 1972, 11:6, 378–380

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024