RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1972 Volume 12, Issue 5, Pages 531–538 (Mi mzm9913)

This article is cited in 9 papers

The best approximation of the differentiation operator in the metric of $L_p$

V. N. Gabushin

Institute of Mathematics and Mechanics, Academy of Sciences of the USSR

Abstract: For Stechkin's problem of the best approximation for the differentiation operator
$$ E_n=\inf_{\substack{L_q\\ ||V||_{L_p}\leqslant n}}\sup_{||f^{(l)}||_{L_r(S)}\leqslant 1}||f^{(k)}-Vf||_{L_q(S)} $$
we indicate the necessary and sufficient conditions that $E_n$ be finite. We study some properties of continuous linear operators $V$ from $L_p$ into $L_q$.

UDC: 517.4

Received: 20.09.1971


 English version:
Mathematical Notes, 1972, 12:5, 756–760

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024