RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2000 Volume 68, Issue 5, Pages 710–724 (Mi mzm992)

This article is cited in 28 papers

On Zeros of Functions of Mittag-Leffler Type

A. M. Sedletskii

M. V. Lomonosov Moscow State University

Abstract: As is well known, the asymptotics of zeros of functions of Mittag-Leffler type
$$ E_\rho(z;\mu)=\sum_{n=0}^\infty\frac{z^n}{\Gamma(\mu+n/\rho)},\qquad\rho>0,\quad\mu\in\mathbb C, $$
describes the behavior of zeros outside a disk of sufficiently large radius. In the paper we solve the problem of finding the number of zeros inside such a disk; this allows us to indicate the numeration of all zeros $E_\rho(z;\mu)$ that agrees with the asymptotics. We study the problem of the distribution of zeros of two functions that can be expressed in terms of $E_1(z;\mu)$, namely of the incomplete gamma-function and of the error function.

UDC: 517.5

Received: 14.09.1999

DOI: 10.4213/mzm992


 English version:
Mathematical Notes, 2000, 68:5, 602–613

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024