RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1975 Volume 18, Issue 4, Pages 499–506 (Mi mzm9964)

This article is cited in 1 paper

Traces of functions with majorizable derivatives

G. A. Kalyabin

Kuibyshev Aviation Institute

Abstract: We study the limiting values ($y\to+0$) of functions $f(x,y)$: $x\in R_n$, $y>0$, for which $\left|{\partial f}/{\partial y}\right|\leqslant M\varphi(y)$; $\left|{\partial f}/{\partial x_k}\right|\leqslant M\psi_k(y)$, $M=M[f]$, in the case of arbitrary weight functions. It is shown that the space of traces can be described as the set of all functions $f(x,0)$ which satisfy a Lipschitz condition in some metric $\omega(x,\tilde{x})$ associated with the weights.

UDC: 517.5

Received: 30.01.1975


 English version:
Mathematical Notes, 1975, 18:4, 886–890

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024