RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1975 Volume 18, Issue 4, Pages 609–620 (Mi mzm9976)

This article is cited in 2 papers

Sufficient conditions for the uniqueness of a probability field and estimates for correlations

O. N. Stavskaya

M. V. Lomonosov Moscow State University

Abstract: In this article we will investigate probability fields (probability distributions) on spaces of the form $X=\prod\limits_{i\in V}X_i$, where $X_i=\{0,1\}$ and $V$ is countable and deduce criteria for the uniqueness of a probability field having a given set of conditional probabilities
$$ \{P_i(x_i/X_{V\setminus i})\},\quad i\in V,\quad x_i\in X_i,\quad x_{V\setminus i}\in\prod_{j\in V\setminus i}X_j. $$
The results obtained here are convenient for the estimates of probability fields of a sufficiently general form (e.g., with an arbitrary conjugate potential). In the case of a Markov field an exponential estimate for the correlations is derived.

UDC: 519.2

Received: 06.02.1975


 English version:
Mathematical Notes, 1975, 18:4, 950–956

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024