RUS  ENG
Full version
JOURNALS // Nanosystems: Physics, Chemistry, Mathematics // Archive

Nanosystems: Physics, Chemistry, Mathematics, 2021 Volume 12, Issue 6, Pages 657–663 (Mi nano1062)

This article is cited in 2 papers

MATHEMATICS

Monotonicity of the eigenvalues of the two-particle Schrödinger operatoron a lattice

J. I. Abdullaevab, A. M. Khalkhuzhaevab, L. S. Usmonovb

a Institute of Mathematics of the Academy of Sciences of the Republic of Uzbekistan, Mirzo Ulugbek 81, Tashkent 100170, Uzbekistan
b Samarkand State University, University Boulevard 15, Samarkand 140104, Uzbekistan

Abstract: We consider the two-particle Schrödinger operator $H(\mathbf{k})$, ($\mathbf{k}\in\mathbf{T^3}\equiv(-\pi,\pi]^3$) is the total quasimomentum of a system of two particles) corresponding to the Hamiltonian of the two-particle system on the three-dimensional lattice $\mathbf{Z}^3$. It is proved that the number $N(\mathbf{k})\equiv N(k^{(1)},k^{(2)},k^{(3)})$ of eigenvalues below the essential spectrum of the operator $H(\mathbf{k})$ is nondecreasing function in each $k^{(i)}\in[0,\pi]$, $i=1,2,3$. Under some additional conditions potential $\hat{v}$, the monotonicity of each eigenvalue $z_n(\mathbf{k})\equiv z_n(k^{(1)},k^{(2)},k^{(3)})$ of the operator $H(\mathbf{k})$ in $k^{(i)}\in[0,\pi]$ with other coordinates $\mathbf{k}$ being fixed is proved.

Keywords: two-particle Schrödinger operator, Birman–Schwinger principle, total quasimomentum, monotonicity of the eigenvalues.

Received: 22.10.2021
Revised: 20.11.2021

Language: English

DOI: 10.17586/2220-8054-2021-12-6-657-663



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024