Abstract:
GaInAsP and GaInAsSbBi solid solutions were grown on GaP (111) substrates by pulsed laser deposition using a laser fluence of 2.3 J/cm$^2$. Energy Dispersive X-ray microanalysis, atomic force microscopy, and Raman spectroscopy were used for analysis of the elemental composition and study of the surface morphology and chemical bonds of the obtained solid solutions. It was found that at constant growth temperature and the fluence of 2.3 J/cm$^2$, the elemental composition of the film has a significant effect on the growth kinetics. Surface-active elements (Sb and Bi) in the composition of the solid solution lead to a change in the surface diffusion of In and Ga, which is accompanied by a decrease in roughness. It was established that the films growth in the Volmer–Weber mode. The grown films are nanotextured with a predominant orientation in the direction of growth (111).