RUS  ENG
Full version
JOURNALS // Nanosystems: Physics, Chemistry, Mathematics // Archive

Nanosystems: Physics, Chemistry, Mathematics, 2024 Volume 15, Issue 2, Pages 255–259 (Mi nano1268)

CHEMISTRY AND MATERIAL SCIENCE

Numerical model of temperature-dependent thermal conductivity in $M_{1-x}R_x\mathrm{F}_{2+x}$ heterovalent solid solution nanocomposites where $M$ stands for alkaline-earth metals and $R$ for rare-earth metals

Pavel A. Popova, Alexander V. Shchelokova, Pavel P. Fedorovb

a Petrovsky Bryansk State University, Bryansk, Russia
b Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia

Abstract: We propose a mathematical model to fit the temperature-dependent thermal conductivity of $M_{1-x}R_x\mathrm{F}_{2+x}$ heterovalent solid solutions where $M$ stands for alkaline-earth metals and $R$ for rare-earth metals. These solid solutions experience composition-driven transition from the crystal-like to glass-like behavior of thermal conductivity. When tested on $\mathrm{Ca}_{1-x}\mathrm{Yb}_x\mathrm{F}_{2+x}$ solid solutions, the model showed a potential for use with an option for further improvements.

Keywords: thermal conductivity, thermal resistance, temperature dependence, solid solution, mathematical model.

Received: 22.02.2024
Revised: 09.03.2024
Accepted: 12.03.2024

Language: English

DOI: 10.17586/2220-8054-2024-15-2-255-259



© Steklov Math. Inst. of RAS, 2024