RUS  ENG
Full version
JOURNALS // Nanosystems: Physics, Chemistry, Mathematics // Archive

Nanosystems: Physics, Chemistry, Mathematics, 2016 Volume 7, Issue 3, Pages 401–404 (Mi nano212)

MATHEMATICS

Functional equations for the Potts model with competing interactions on a Cayley tree

G. I. Botirov

Institute of Mathematics, National University of Uzbekistan

Abstract: In this paper, we consider an infinite system of functional equations for the Potts model with competing interactions of radius $r=2$ and countable spin values $0,1,\dots$, and non-zero-filled, on a Cayley tree of order two. We describe conditions on $h_x$ guaranteeing compatibility of distributions $\mu^{(n)}(\sigma_n)$.

Keywords: Cayley tree, Potts model, Gibbs measures, functional equations.

PACS: 05.50.+q, 05.70.Fh, 02.30.-f, 02.50.Ga

Received: 23.03.2016

Language: English

DOI: 10.17586/2220-8054-2016-7-3-401-404



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025