RUS  ENG
Full version
JOURNALS // Nanosystems: Physics, Chemistry, Mathematics // Archive

Nanosystems: Physics, Chemistry, Mathematics, 2021 Volume 12, Issue 1, Pages 5–14 (Mi nano582)

MATHEMATICS

Bifurcating standing waves for effective equations in gapped honeycomb structures

W. Borrellia, R. Carloneb

a Centro De Giorgi, Scuola Normale Superiore, Piazza dei Cavalieri 3, I-56100, Pisa, Italy
b Universita “Federico II” di Napoli, Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, MSA, via Cinthia, I-80126, Napoli, Italy

Abstract: In this paper, we deal with two-dimensional cubic Dirac equations, appearing as an effective model in gapped honeycomb structures. We give a formal derivation starting from cubic Schrödinger equations and prove the existence of standing waves bifurcating from one band-edge of the linear spectrum.

Keywords: nonlinear Dirac equations, bifurcation methods, existence results, honeycomb structures.

PACS: 03.65.-w, 02.30.Rz

Received: 28.12.2020
Revised: 06.01.2021

Language: English

DOI: 10.17586/2220-8054-2021-12-1-5-14



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024