RUS  ENG
Full version
JOURNALS // Nanosystems: Physics, Chemistry, Mathematics // Archive

Nanosystems: Physics, Chemistry, Mathematics, 2013 Volume 4, Issue 4, Pages 446–466 (Mi nano781)

Diffusion and Laplacian transport for absorbing domains

Ibrahim Baydouna, Valentin A. Zagrebnovb

a École Centrale Paris, 2 Avenue Sully Prudhomme, 92290 Chtenay-Malabry, France
b Département de Mathématiques, Université d’Aix-Marseille Laboratoire d'Analyse, Topologie et Probabilités (UMR 7353)CMI - Technopôle Château-Gombert, 39, rue F. Joliot Curie, 13453 Marseille Cedex 13, France

Abstract: We study (stationary) Laplacian transport by the Dirichlet-to-Neumann formalism. Our results concern a formal solution of the geometrically inverse problem for localisation and reconstruction of the form of absorbing domains. Here, we restrict our analysis to the one- and two-dimensional cases. We show that the last case can be studied by the conformal mapping technique. To illustrate this, we scrutinize the constant boundary conditions and analyze a numeric example.

Keywords: Laplacian transport, dirichlet-to-Neumann operators, conformal mapping.

PACS: 47A55, 47D03, 81Q10

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024