RUS  ENG
Full version
JOURNALS // Nanosystems: Physics, Chemistry, Mathematics // Archive

Nanosystems: Physics, Chemistry, Mathematics, 2015 Volume 6, Issue 1, Pages 46–56 (Mi nano918)

This article is cited in 4 papers

On the Robin eigenvalues of the Laplacian in the exterior of a convex polygon

Konstantin Pankrashkin

Laboratoire de mathématique, Université Paris-Sud, Bâtiment 425, 91405 Orsay Cedex, France

Abstract: Let $\Omega\subset\mathbb{R}^2$ be the exterior of a convex polygon whose side lengths are $\ell_1,\dots,\ell_M$. For a real constant $\alpha$, let $H_\alpha^\Omega$ denote the Laplacian in $\Omega$, $u\mapsto -\Delta u$, with the Robin boundary conditions $\partial u/\partial\nu=\alpha u$ at $\partial\Omega$, where $\nu$ is the outer unit normal. We show that, for any fixed $m\in\mathbb{N}$, the $m$th eigenvalue $E_m^\Omega(\alpha)$ of $H_\alpha^\Omega$ behaves as $E_m^\Omega(\alpha)=-\alpha^2+\mu_m^D+\mathcal{O}(\alpha^{-1/2})$ as $\alpha\to+\infty$ where $\mu_m^D$ stands for the $m$th eigenvalue of the operator $D_1\oplus\cdots\oplus D_M$ and $D_n$ denotes the one-dimensional Laplacian $f\mapsto -f''$ on $(0,\ell_n)$ with the Dirichlet boundary conditions.

Keywords: eigenvalue asymptotics, Laplacian, Robin boundary condition, Dirichlet boundary condition.

PACS: 41.20.Cv, 02.30.Jr, 02.30.Tb

Received: 05.11.2014

Language: English

DOI: 10.17586/2220-8054-2015-6-1-46-56



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025